

EXPECTATIONS

What we will cover

- The conceptual framework of Bayesian inference
- How to run (generalized) linear models using brms
- How to specify priors and interpret results
- How to draw probabilistic inferences from results

what we won't cover

- Introduction to R / data carpentry in R
- Introduction to (generalized) linear models

Think!

Formulate an appropriate model 2

Check what priors need to be 3 specified (get prior())

Specify weakly informative Description of the prior of

MORKFLOW

Think!

Formulate an appropriate model 2

Check what priors need to be 3 specified (get prior())

Specify weakly informative priors for all parameters

MORKFLOW

- Run the model
- Resolve sampling issues if they occur 6 (e.g. up iterations, change priors, etc.)
- Critically evaluate the fit, and 7 refit if necessary (pp check())
- Interpret the results quantitatively 8 and draw probabilistic inference

Thinking more about the generative model

Model assuming log-normally distributed residuals

Thinking more about the generative model

Model without 'gender' variable

Model with 'gender' variable

Thinking more about our interpretation $ROPE = \pm 0.1$ Mean = 0.28 [0.14 0.79] % in ROPE = 18.19%

SHOW REEL the power of brms

Nixed Iinear models

add random intercept and slopes

Roettger & Baer-Henney (2019) https://osf.io/9kywf/ formula = measure ~ predictor +
 (1 + predictor | speaker) +
 (1 + predictor | item)

Generalized linear models binomial

dichotomous dependent variable

Lozano-Argüelles et al. (2020) https://osf.io/cp9bs/ 100.0% -

Proportion /p/ 50.0%

25.0%

0.0%

formula = correct ~ predictor, family = "bernoulli"

Generalized linear models (ordinal)

ordered dependent variable

Roettger, Mahrt, & Cole (2019) https://osf.io/4qxmh/

formula = likert ~ predictor, family = "cumulative"

Focus competitor

Generalized linear models (multinomial)

categorical dependent variable

Sóskuthy & Roettger (2020) https://osf.io/ejr8m/ proportion of forms vith respective vowel quality

formula = category ~ predictor, family = "categorical"

Growth **Curve &** Generalized additive models (GANS)

nonlinear relationships

Mahr (2018) https://www.tjmahr.com/dissertation/

formula = measure ~ s(time)

Meta analysis

modelling data across multiple studies

e.g. Casillas (2021) https://osf.io/un45x/.

formula = es | se(se) ~ 1 + (1 | study)

Mixture models

assuming that dv is generated by mixture of gaussian processes

Roessig, Mücke & Grice (2019) https://zenodo.org/record/2611316

m	
fc	

contrastive -

Lx <- mixture(gaussian, gaussian)</pre> ormula = measure ~ predictor, family = "mix")

Multivariate models

modelling more than one DV

Nalborczyk et al. 2020 https://osf.io/czer4/

formula = cbind(DV1, DV2) ~ predictor

Reading recommendations

Texts in Statistical Science

Statistical Rethinking

A Bayesian Course with Examples in R and Stan **SECOND EDITION**

A CHAPMAN & HALL BOOK

https://bookdown.org/content/4857/

Tutorials for speech scientists

Nalborczyk, Batailler, Lœvenbruck, Vilain & Bürkner (2019). An introduction to Bayesian multilevel models using brms: A case study of gender effects on vowel variability in standard Indonesian. *Journal of Speech, Language, and Hearing Research*, 62(5), 1225-1242.

Vasishth, Nicenboim, Beckman, Li & Kong (2018). Bayesian data analysis in the phonetic sciences: A tutorial introduction. Journal of phonetics, 71, 147-161.

Franke & Roettger (2019). Bayesian regression modeling (for factorial designs): A tutorial. Unpublished manuscript. https://doi.org/10.31234/osf.io/cdxv3

Online forum

https://discourse.mc-stan.org

https://stackexchange.com/

Community our Slack Channel :)

1st Bayesian Model

Run your first Bayesian Model

Bayes Theorem

What does it mean to think like a Bayesian?

Priors - Part 1

What are priors?

Priors - Part 2 How do I specify priors?

NHST vs. Bayes

Why are we doing this again?

Review Day 1 in a nutshell

Inference

How do I answer my research question without a p-value?

More on priors

Why is it a good idea to specify priors?

Mixed Models

with brms

Sampling What happens under the hood?

Run linear mixed effects models

1:1 sessions

1:1 sessions

1:1 sessions

References

Nalborczyk, Batailler, Lœvenbruck, Vilain & Bürkner (2019). An introduction to Bayesian multilevel models using brms: A case study of gender effects on vowel variability in standard Indonesian. Journal of Speech, Language, and Hearing Research, 62(5), 1225-1242.

Kruschke (2011). Doing Bayesian data analysis: A tutorial with R and BUGS. Elsevier Academic Press.

Vasishth, Nicenboim, Beckman, Li & Kong (2018). Bayesian data analysis in the phonetic sciences: A tutorial introduction. Journal of phonetics, 71, 147-161.

Roettger, Mahrt & Cole (2019). Mapping prosody onto meaning-the case of information structure in American English. Language, Cognition and Neuroscience, 34(7), 841-860

McElreath. Statistical rethinking: A Bayesian course with examples in R and Stan. Chapman and Hall/CRC, 2018.

Franke & Roettger (2019). Bayesian regression modeling (for factorial designs): A tutorial. Unpublished manuscript. https://doi.org/10.31234/osf.io/cdxv3

Casillas (2021). Interlingual interactions elicit performance mismatches not "compromise" categories in early bilinguals: Evidence from meta-analysis and coronal stops. Languages, 6(1), 9.

Roettger & Baer-Henney (2019). Toward a replication culture: Speech production research in the classroom. Phonological Data and Analysis, 1(4), 1-23.

Sóskuthy & Roettger (2020). When the tune shapes morphology: the origins of vocatives. Journal of Language Evolution, 5(2), 140-155.

Argüelles, C. L., Arroyo, L. F., Rodriguez, N., López, E. M. D., Pozu, J. J. G., Markovits, J., ... & Casillas, J. V. (2020). Conceptually-cued perceptual categorization in adult L2 learners.

Nalborczyk, Grandchamp, Koster, Perrone-Bertolotti & Loevenbruck (2020). Can we decode phonetic features in inner speech using surface electromyography?. PloS one, 15(5), e0233282

Roessig, Mücke & Grice (2019). The dynamics of intonation: Categorical and continuous variation in an attractor-based model. PloS one, 14(5), e0216859.

Mahr (2018). Development of word recognition in preschoolers. The University of Wisconsin-Madison.