

P(dead | decapitated by shark)

P(Data | Hypothesis) 7 P(Hypothesis | Data) *P*(decapitated by shark | dead)

P(Data | Theory)

no prior knowledge

quantifies long-run probability of finding a false positive

hard cut-off decisions

HAST # Bayesian

P(Theory | Data)

incorporates prior knowledge

quantifies uncertainty around possible parameter values

gradual assessment of evidence

P(Data | Theory)

no prior knowledge

quantifies long-run probability of finding a false positive

hard cut-off decisions

HAST # Bayesian

P(Theory | Data)

incorporates prior knowledge

quantifies uncertainty around possible parameter values

gradual assessment of evidence

very **flexible** in terms of model architecture

not limited by optimization constraints (no "convergence failures")

not limited to categorical decision procedure

computationally expensive

• one more layer of researcher degrees of freedom

more "thinking" required

types of **error distributions**

gaussian, binomial, ordinal, multinomial, etc.

types of **fitting procedures** univariate, multivariate, mixture, etc.

levels of **covariance**

simple regression, multiple regression, mixed-effect regression, etc.

Warning message: In checkConv(attr(opt, "derivs"), opt\$par, ctrl = control\$checkConv, : Model failed to converge with max|grad| = 0.0139723 (tol = 0.002, component 1)

convergence issues? lmer()

DO I BRING MY UMBRELLA?

ARE MY RESULTS SIGNIFICANT?

have been and the second of th

no decision procedure

more "thinking" required •

can be **intractable** to solve, but...

- *Pr*(Data | Theory) × *Pr*(Theory)
 - Pr(Data)

$$\blacktriangleright Pr(Data) = \int Pr(Data, Theory) d_{Theory}$$

- can be **approximated** with clever algorithms

more degrees of freedom? B

posterior after 100 coin flips

very **flexible** in terms of model architecture

not limited by optimization constraints (no "convergence failures")

not limited to categorical decision procedure

computationally expensive

• one more layer of researcher degrees of freedom

more "thinking" required

1st Bayesian Model

Run your first Bayesian Model

Bayes Theorem

What does it mean to think like a Bayesian?

Priors - Part 1

What are priors?

Priors - Part 2 How do I specify priors?

NHST vs. Bayes

Why are we doing this again?

Review Day 1 in a nutshell

Inference

How do I answer my research question without a p-value?

More on priors Why is it a good idea to specify priors?

Mixed Models

with brms

Sampling What happens under the hood?

Run linear mixed effects models

1:1 sessions

1:1 sessions

1:1 sessions

